Search

Shopping cart

Saved articles

You have not yet added any article to your bookmarks!

Browse articles
Newsletter image

Subscribe to the Newsletter

Join 10k+ people to get notified about new posts, news and tips.

Do not worry we don't spam!

GDPR Compliance

We use cookies to ensure you get the best experience on our website. By continuing to use our site, you accept our use of cookies, Privacy Policy, and Terms of Service.

Machine Learning Techniques for Gait Biometric Recognition

Machine Learning Techniques for Gait Biometric Recognition

This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF.
This book

·         introduces novel machine-learning-based temporal normalization techniques

·         bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition

·         provides detailed discussions of key research challenges and open research issues in gait biometrics recognition

·         compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

More Books from James Eric Mason, Issa Traoré & Isaac Woungang
Comments