Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
This monograph comprises work on network-based Intrusion Detection (ID) that is grounded in visualisation and hybrid Artificial Intelligence (AI). It has led to the design of MOVICAB-IDS (MObile VIsualisation Connectionist Agent-Based IDS), a novel Intrusion Detection System (IDS), which is comprehensively described in this book.
This novel IDS combines different AI paradigms to visualise network traffic for ID at packet level. It is based on a dynamic Multiagent System (MAS), which integrates an unsupervised neural projection model and the Case-Based Reasoning (CBR) paradigm through the use of deliberative agents that are capable of learning and evolving with the environment.
The proposed novel hybrid IDS provides security personnel with a synthetic, intuitive snapshot of network traffic and protocol interactions. This visualisation interface supports the straightforward detection of anomalous situations and their subsequent identification.
The performance of MOVICAB-IDS was tested through a novel mutation-based testing method in different real domains which entailed several attacks and anomalous situations.
Comments