Search

Shopping cart

Saved articles

You have not yet added any article to your bookmarks!

Browse articles
Newsletter image

Subscribe to the Newsletter

Join 10k+ people to get notified about new posts, news and tips.

Do not worry we don't spam!

GDPR Compliance

We use cookies to ensure you get the best experience on our website. By continuing to use our site, you accept our use of cookies, Privacy Policy, and Terms of Service.

Algorithms for Fuzzy Clustering

Algorithms for Fuzzy Clustering

The main subject of this book is the fuzzy c-means proposed by Dunn and Bezdek and their variations including recent studies. A main reason why we concentrate on fuzzy c-means is that most methodology and application studies in fuzzy clustering use fuzzy c-means, and hence fuzzy c-means should be considered to be a major technique of clustering in general, regardless whether one is interested in fuzzy methods or not. Unlike most studies in fuzzy c-means, what we emphasize in this book is a family of algorithms using entropy or entropy-regularized methods which are less known, but we consider the entropy-based method to be another useful method of fuzzy c-means. Throughout this book one of our intentions is to uncover theoretical and methodological differences between the Dunn and Bezdek traditional method and the entropy-based method. We do note claim that the entropy-based method is better than the traditional method, but we believe that the methods of fuzzy c-means become complete by  adding the entropy-based method to the method by Dunn and Bezdek, since we can observe natures of the both methods more deeply by contrasting these two.

Comments