Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
Random variables are rarely independent in practice and so many multivariate distributions have been proposed in the literature to give a dependence structure for two or more variables. In this book, we restrict ourselves to the bivariate distributions for two reasons: (i) correlation structure and other properties are easier to understand and the joint density plot can be displayed more easily, and (ii) a bivariate distribution can normally be extended to a multivariate one through a vector or matrix representation. This volume is a revision of Chapters 1-17 of the previous book Continuous Bivariate Distributions, Emphasising Applications authored by Drs. Paul Hutchinson and Chin-Diew Lai.
The book updates the subject of copulas which have grown immensely during the past two decades. Similarly, conditionally specified distributions and skewed distributions have become important topics of discussion in this area of research. This volume, which provides an up-to-date review of various developments relating to bivariate distributions in general, should be of interest to academics and graduate students, as well as applied researchers in finance, economics, science, engineering and technology.
N. BALAKRISHNAN is Professor in the Department of Mathematics and Statistics at McMaster University, Hamilton, Ontario, Canada. He has published numerous research articles in many areas of probability and statistics and has authored a number of books including the four-volume series on Distributions in Statistics, jointly with Norman L. Johnson and S. Kotz, published by Wiley. He is a Fellow of the American Statistical Association and the Institute of Mathematical Statistics, and the Editor-in-Chief of Communications in Statistics and the Executive Editor of Journal of Statistical Planning and Inference.
CHIN-DIEW LAI holds a Personal Chair in Statistics at Massey University, Palmerston North, New Zealand. He has published more than 100 peer-reviewed research articles and co-authored three well-received books. He was a former editor-in-chief and is now an Associate Editor of the Journal of Applied Mathematics and Decision Sciences.
Comments