Search

Shopping cart

Saved articles

You have not yet added any article to your bookmarks!

Browse articles
Newsletter image

Subscribe to the Newsletter

Join 10k+ people to get notified about new posts, news and tips.

Do not worry we don't spam!

GDPR Compliance

We use cookies to ensure you get the best experience on our website. By continuing to use our site, you accept our use of cookies, Privacy Policy, and Terms of Service.

Algebraic Aspects of the Advanced Encryption Standard

Algebraic Aspects of the Advanced Encryption Standard

The Belgian block cipher Rijndael was chosen in 2000 by the U.S. government’s National Institute of Standards and Technology (NIST) to be the successor to the Data Encryption Standard. Rijndael was subsequently standardized as the Advanced Encryption Standard (AES), which is potentially the world’s most important block cipher. In 2002, some new analytical techniques were suggested that may have a dramatic effect on the security of the AES. Existing analytical techniques for block ciphers depend heavily on a statistical approach, whereas these new techniques are algebraic in nature.

Algebraic Aspects of the Advanced Encryption Standard, appearing five years after publication of the AES, presents the state of the art for the use of such algebraic techniques in analyzing the AES.

The primary audience for this work includes academic and industry researchers in cryptology; the book is also suitable for advanced-level students.

Comments