Search

Shopping cart

Saved articles

You have not yet added any article to your bookmarks!

Browse articles
Newsletter image

Subscribe to the Newsletter

Join 10k+ people to get notified about new posts, news and tips.

Do not worry we don't spam!

GDPR Compliance

We use cookies to ensure you get the best experience on our website. By continuing to use our site, you accept our use of cookies, Privacy Policy, and Terms of Service.

Explainable Deep Learning AI (Enhanced Edition)

Explainable Deep Learning AI (Enhanced Edition)

Explainable Deep Learning AI: Methods and Challenges presents the latest works of leading researchers in the XAI area, offering an overview of the XAI area, along with several novel technical methods and applications that address explainability challenges for deep learning AI systems. The book overviews XAI and then covers a number of specific technical works and approaches for deep learning, ranging from general XAI methods to specific XAI applications, and finally, with user-oriented evaluation approaches. It also explores the main categories of explainable AI – deep learning, which become the necessary condition in various applications of artificial intelligence.

The groups of methods such as back-propagation and perturbation-based methods are explained, and the application to various kinds of data classification are presented. Provides an overview of main approaches to Explainable Artificial Intelligence (XAI) in the Deep Learning realm, including the most popular techniques and their use, concluding with challenges and exciting future directions of XAI Explores the latest developments in general XAI methods for Deep Learning Explains how XAI for Deep Learning is applied to various domains like images, medicine and natural language processing Provides an overview of how XAI systems are tested and evaluated, specially with real users, a critical need in XAI

Comments