Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
The text discusses recurrent neural networks for prediction and offers new insights into the learning algorithms, architectures, and stability of recurrent neural networks. It discusses important topics including recurrent and folding networks, long short-term memory (LSTM) networks, gated recurrent unit neural networks, language modeling, neural network model, activation function, feed-forward network, learning algorithm, neural turning machines, and approximation ability. The text discusses diverse applications in areas including air pollutant modeling and prediction, attractor discovery and chaos, ECG signal processing, and speech processing. Case studies are interspersed throughout the book for better understanding.
FEATURES
Covers computational analysis and understanding of natural languages Discusses applications of recurrent neural network in e-Healthcare Provides case studies in every chapter with respect to real-world scenarios Examines open issues with natural language, health care, multimedia (Audio/Video), transportation, stock market, and logistics
The text is primarily written for undergraduate and graduate students, researchers, and industry professionals in the fields of electrical, electronics and communication, and computer engineering/information technology.
Comments