Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
In an era where Artificial Intelligence (AI) is revolutionizing healthcare, Explainable AI in Healthcare Imaging for Precision Medicine addresses the critical need for transparency, trust, and accountability in AI-driven medical technologies. As AI becomes an integral part of clinical decision-making, especially in imaging and precision medicine, the question of how AI reaches its conclusions grows increasingly significant. This book explores how Explainable AI (XAI) is transforming healthcare by making AI systems more interpretable, reliable, and transparent, empowering clinicians and enhancing patient outcomes. Through a comprehensive examination of the latest research, real-world case studies, and expert insights, this book delves into the application of XAI in medical imaging, disease diagnosis, treatment planning, and personalized care. It discusses the technical methodologies behind XAI, the challenges and opportunities of its integration into healthcare, and the ethical and regulatory considerations that will shape the future of AI-assisted medical decisions. Key areas of focus include the role of XAI in improving diagnostic accuracy in fields such as radiology, pathology, and genomics and its potential to enhance collaboration between AI systems, healthcare professionals, and patients. The book also highlights practical applications of XAI in personalized medicine, showing how explainable models help tailor treatments to individual patients, and discusses how XAI can contribute to reducing bias and improving fairness in medical decision-making. Written by leading experts in AI, healthcare, and precision medicine, Explain[S3G1] able AI in Healthcare Imaging for Precision Medicine is an essential resource for researchers, clinicians, students, and policymakers. Whether you are looking to stay at the forefront of AI innovations in healthcare or seeking to understand how explainability can build trust in AI systems, this book provides the insights and knowledge needed to navigate the evolving landscape of AI in medicine. It invites readers to explore how XAI can revolutionize healthcare and precision medicine, shaping a future where AI is both powerful and trustworthy.
- Provides step-by-step procedures to build a digital human model
- Assists in validating predicted human motion using simulations and experiments
- Offers formulation optimization features for dynamic human motion prediction
Comments