Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
Hands-On AI: Building ML Models with Python" provides a comprehensive guide to understanding and applying machine learning (ML) using Python. The book covers the fundamental concepts, mathematical foundations, and the essential tools necessary for building successful ML models. It begins with an introduction to machine learning, explaining the basics and setting up the Python environment for AI development. The book then delves into data preparation and feature engineering, exploring techniques for data cleaning, wrangling, and visualization, all of which are crucial for effective model training.
The book also addresses core machine learning algorithms, including supervised and unsupervised learning, regression models, classification models, and ensemble methods. Advanced topics such as deep learning, natural language processing (NLP), reinforcement learning, and time series forecasting are also discussed in detail. Practical applications and real-world examples are integrated throughout, allowing readers to see how theoretical concepts are applied in industry scenarios.
Additionally, the book explores model evaluation, optimization, and deployment, including how to build and deploy end-to-end ML pipelines. Readers will gain insights into scaling models, automating workflows, and implementing CI/CD for machine learning.
With a focus on hands-on experience, the book is designed for practitioners who want to enhance their skills and develop practical, deployable machine learning models. It serves as both an introductory and advanced reference, offering invaluable knowledge for those looking to pursue careers in machine learning and AI.
Comments