Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
Cloud AI Mastery: Deploying Models at Scale with AWS, Azure, and Google Cloud" is a comprehensive guide for data scientists, machine learning engineers, and developers seeking to leverage the power of cloud computing for building, training, deploying, and managing AI models at scale. The book begins by establishing a strong foundation in cloud computing principles and core machine learning concepts, including supervised, unsupervised, and reinforcement learning, as well as neural network architectures.
The core of the book dives into the AI/ML offerings of the three major cloud providers: AWS, Azure, and Google Cloud. For AWS, the book explores Amazon SageMaker in detail, covering model building, training, hyperparameter tuning, and deployment strategies like real-time inference and batch transform. It also examines AWS AI services like Rekognition, Comprehend, Translate, and Polly. The Azure section focuses on Azure Machine Learning, including workspaces, automated ML, the Designer interface, and MLOps integration with Azure DevOps. It also covers Azure Cognitive Services, exploring Vision, Speech, Language, and Decision APIs. The Google Cloud section delves into Vertex AI, covering Workbench, custom training, pre-trained models, and MLOps with Vertex AI Pipelines. It also explores Google Cloud AI APIs like the Vision, Natural Language, and Translation APIs, along with Dialogflow for conversational AI.
The book then transitions to advanced topics and best practices, covering scaling AI deployments with containerization (Docker and Kubernetes) and serverless computing. It also addresses crucial aspects like monitoring, logging, debugging, security, compliance (GDPR, HIPAA, PCI DSS), and cost optimization strategies. The conclusion looks at the future of cloud AI, discussing emerging trends like edge AI, TinyML, explainable AI, generative AI, and responsible AI practices.
Throughout the book, practical examples, code snippets, and comparative analyses are provided to enhance understanding and facilitate real-world application of the concepts. This makes "Cloud AI Mastery" a practical resource for anyone looking to master cloud-based AI deployments.
Comments