Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
Advanced Machine Learning for Complex Medical Data Analysis is a definitive guide to leveraging machine learning to solve critical challenges in medical data analysis. This book discusses cutting-edge methodologies, from predictive modeling to neural networks, tailored to address the unique complexities of medical and healthcare data. It combines theoretical frameworks with practical applications, ensuring readers gain a comprehensive understanding of both concepts and real-world implementations.The book covers diverse topics, including medical image denoising, the transformative role of GANs, IoT applications in healthcare, early disease detection using speech data, and COVID detection using autoencoders. It also explores the impact of big data, statistical approaches to medical analytics, and public health improvements through technology. Key Features:- Practical insights into deploying advanced machine learning models for healthcare.- Real-world case studies on diverse diseases and datasets.- Cutting-edge topics like explainable AI, federated learning, and ethical considerations.- Methods for improving data accuracy, efficiency, and privacy. Readership: Researchers, academics, graduate students, and professionals in data science, bioinformatics, and healthcare analytics.
Comments