Search

Shopping cart

Saved articles

You have not yet added any article to your bookmarks!

Browse articles
Newsletter image

Subscribe to the Newsletter

Join 10k+ people to get notified about new posts, news and tips.

Do not worry we don't spam!

GDPR Compliance

We use cookies to ensure you get the best experience on our website. By continuing to use our site, you accept our use of cookies, Privacy Policy, and Terms of Service.

Federated Learning in Metaverse Healthcare

Federated Learning in Metaverse Healthcare

Federated Learning in Metaverse Healthcare: Personalized Medicine and Wellness explores the integration of the metaverse with healthcare, offering immersive experiences and personalized care. The book introduces federated learning, emphasizing its advantages over traditional centralized machine learning in healthcare. It provides a historical context and discusses the technological advancements that led to the emergence of metaverse healthcare. Privacy-preserving methods crucial for protecting sensitive healthcare data within federated learning environments are also examined, underscoring the importance of secure communication protocols. Other important points include the transformation of healthcare delivery through virtual environments, remote consultations, and immersive experiences.The role of telemedicine in facilitating remote diagnostics and consultations via virtual platforms, and the applications of augmented reality wearables for real-time health monitoring and wellness tracking are detailed. Additionally, the book discusses federated learning's ability to deliver personalized treatment plans tailored to individual patient needs, its role in predictive modeling for disease risks and prevention, as well as virtual health coaches offering personalized guidance for wellness management. The challenges and ethical dilemmas of metaverse healthcare and federated learning, along with potential solutions, are also considered.
- Explains privacy-preserving techniques in federated learning, such as federated averaging, differential privacy, and secure aggregation, thus ensuring the protection of sensitive healthcare data
- Presents use cases and case studies that demonstrate the practical applications of federated learning in virtual healthcare settings
- Illustrates its impact on patient care, medical research, and healthcare innovation
- Contains contributions from leading experts in the fields of healthcare, artificial intelligence, and virtual reality, providing valuable insights and perspectives on the intersection of federated learning and metaverse healthcare

Comments