Search

Shopping cart

Saved articles

You have not yet added any article to your bookmarks!

Browse articles
Newsletter image

Subscribe to the Newsletter

Join 10k+ people to get notified about new posts, news and tips.

Do not worry we don't spam!

GDPR Compliance

We use cookies to ensure you get the best experience on our website. By continuing to use our site, you accept our use of cookies, Privacy Policy, and Terms of Service.

Federated Learning in Health Care Technology

Federated Learning in Health Care Technology

This book offers an in-depth exploration of federated learning (FL), a groundbreaking approach that facilitates collaborative data analysis while ensuring patient privacy and data security. As healthcare systems worldwide generate vast amounts of data, the challenge lies in harnessing this information without compromising confidentiality. Federated learning addresses this by allowing multiple institutions to collaborate on machine learning models without sharing sensitive data. In this context, the authors delve into the foundational principles of FL, illustrating how it enables the aggregation of decentralized data to improve diagnostic accuracy, develop personalized treatment plans, and enhance overall healthcare outcomes. The authors present real-world applications across various medical fields, from predictive analytics in chronic disease management to precision medicine and beyond. Additionally, the authors discuss the ethical and regulatory landscapes, providing insights into the challenges and solutions associated with implementing FL in healthcare. This book is designed for a diverse audience, including researchers, healthcare practitioners, data scientists, and policymakers. It aims to bridge the gap between cutting-edge technology and practical medical applications, offering a comprehensive guide to leveraging FL for healthcare innovation.

More Books from Muhammad Firoz Mridha & Nilanjan Dey
Comments