Shopping cart
Your cart empty!
Terms of use dolor sit amet consectetur, adipisicing elit. Recusandae provident ullam aperiam quo ad non corrupti sit vel quam repellat ipsa quod sed, repellendus adipisci, ducimus ea modi odio assumenda.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Dolor sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Sit amet consectetur adipisicing elit. Sequi, cum esse possimus officiis amet ea voluptatibus libero! Dolorum assumenda esse, deserunt ipsum ad iusto! Praesentium error nobis tenetur at, quis nostrum facere excepturi architecto totam.
Lorem ipsum dolor sit amet consectetur adipisicing elit. Inventore, soluta alias eaque modi ipsum sint iusto fugiat vero velit rerum.
Do you agree to our terms? Sign up
This book explores the critical role of vector representations in generative AI and large language models (LLMs), detailing how data transforms into vectors and embeds into high-dimensional spaces for advanced AI applications. Beginning with the fundamentals of vector embeddings, the text outlines the mathematical foundations, including key linear algebra concepts, before delving into vectorization techniques like One-Hot Encoding, Word2Vec, and TF-IDF.
The book highlights how vector embeddings enhance LLMs, examining models such as GPT and BERT and their use of contextual embeddings to achieve superior performance. It also investigates the significance of vector spaces in generative AI models like VAEs, GANs, and diffusion models, focusing on embedding latent spaces and training techniques.
Addressing the challenges of high-dimensional data, the book offers dimensionality reduction strategies such as PCA, t-SNE, and UMAP while discussing fine-tuning embeddings for specific tasks within LLMs. Practical applications are explored, covering areas like vector search and retrieval, text generation, image synthesis, and music creation.
In conclusion, the book examines ethical considerations, including managing bias in vector spaces, and discusses emerging trends in the landscape of AI, emphasizing the transformative potential of vector representations in driving innovation and enhancing AI capabilities across various domains.
Comments